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STEP I 2016 Solutions

Question 1

As a starter to the paper, this is a straightforward question in terms of its early demands and involves little
more than the need to sort out some clearly signposted algebra. To begin with, it is clear that, whenever n
is odd, the expression (xn + 1) has (x + 1) as a factor (by the Factor Theorem), so that

qn(x) = 1... 2322122 xxxxxx nnn .
Examining the pn(x)’s in turn, using the binomial theorem (and Pascal’s Triangle for the coefficients), gives
p1(x) = )1(3122 xxx = 12 xx ,

p2(x) = )1(51464 2234 xxxxxxx = 1234 xxxx , and

p3(x) = 161520156 23456 xxxxxx – 7x( 12 xx )2.

Expanding ( 12 xx )2 is relatively straightforward, and it is relatively easy to obtain the required results.

There are several ways to demonstrate that two given expressions of the given kind are not identically
equal. One is to expand them both as polynomials and show that they are not the same. In this case,
p4(x) = 1272 2345678 xxxxxxxx while q4(x) = 12345678 xxxxxxxx .

Alternatively, one need only show that one corresponding pair of coefficients are not the same – here, the
coefficients of (say) x5 are not equal. However, the simplest thing is to find any one value of x for which the
two expressions give different values. It turns out, in fact, that only x = 0 actually does give equal outputs,
so almost any chosen value of x would suffice, and the key is then to choose one for which the working

involves the minimum of effort, such as p4(1) = 28 – 9.1.33 = 13 q4(1) = 1
11
119

.

In (ii) (a), the given numerical expression is clearly that for q1(x) with x = 300. Since p and q are the same
thing when n = 1, we instead examine p1(300), and it becomes clear that if x is 3 times a perfect square (in
this case 3 102) then we can use the difference of two squares factorisation on (301)2 – (3 10)2 to get the
answer 271 331.

Part (b) has a similar thing going on, but here we need x to be 7 times a perfect square, and we find that

we have 27148
237 177717 , which again requires the use of the difference of two squares

factorisation and yields 4111837 77717 4111837 77717 or
4111871421 77717.37.37 4111871421 77717.37.37 ,

either of which answers would suffice.
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Question 2

Once again, this question begins with a very simple instruction, to differentiate a function of x, and will
clearly involve the use of both the Product Rule (twice) and the Chain Rule (in order to deal with the log.
term and the square root). In principle, this looks very straightforward, though the key is to be careful not
to overlook some aspect of the various processes at play, and then to simplify the resulting expressions in a
suitable way. To begin with, one will obtain something that looks quite messy:

x
y

d
d xx

xx
cbxax 2.11

1
1 2

1
2

2
1

2

2 21ln2 xxbax

+ 22
1

2
2
1 12.1 xdxxedx

and it is easy to be put off; it is especially important not to attempt too much “in your head”. You should
find this simplifies to

x
y

d
d

2

2

2

2

1
1

1 x
xx

xx
cbxax + 21ln2 xxbax + 2

2
1

1
xd

x
edxx

and collecting up terms suitably, and noting that 2

2

2 1
1

1
1

x
x

x
leads to an expression which contains

only simple multiples of
21

1
x

and 21ln xx ; namely

x
y

d
d

2

2

1
)()()2(

x
dcxebxda + 21ln2 xxbax .

All the results of the remaining parts of the question can now be deduced by choosing suitable values for
the constants a to e.

In (i), choosing a = d = 0, b = 1, e = –1 and c = 0 gives
x
y

d
d

2

2

1
)0()0()0(

x
xx + 21ln10 xx , so

that 21ln xx dx = 22 11ln xxxx (+ C).

In (ii), choosing a = b = e = 0 and c = d = 2
1 gives

x
y

d
d

2

2

1
)1()0()10(

x
xx + 21ln00 xx , so that

21 x dx = 2
2
12

2
1 11ln xxxx (+ C) .

And in (iii), choosing a = 2
1 , b = e = 0, c = 4

1 and d = 4
1 gives

x
y

d
d

2

4
1

4
12

2
1

2
1

1

)()0()(

x

xx
+ 21ln0 xxx

and hence 21ln xxx dx = 2
4
12

4
12

2
1 11ln xxxxx (+ C).
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Question 3

If you have not seen this sort of function before, then it is worthwhile playing around with such things as
part of your preparation for the STEPs, which frequently test perfectly simple ideas in contexts that are not
a standard part of A level (or equivalent) courses. Being able to think things through calmly and carefully
under examination conditions is an especially high level skill, but one that can be practised.

In this case, the “integer part” function is a relatively simple one to deal with, as it only changes values
when the function it acts on hits an integer value. Before commencing work on this question, note that the
“integer part” of a negative number is the one to the left of it (if it lies between integers, of course), and
many function plotting packages are set to “go right” for negative numbers, which is unfortunate. There is
also the small matter of how to illustrate the “y” values at those points when the “step” occurs … the
tradition is to employ a “filled” circle ( ) for inclusion and an “open” circle ( ) for exclusion. With a bit of
care you should find that the four graphs required here look as follows.

(i) (ii)

(iii) (iv)
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Question 4

As with Q2, this begins with a simple instruction to differentiate; again, the idea is that you will tidy up the

final answer for later reference. Using the Quotient and Chain Rules on
21 z

zy gives

z
y

d
d

= 2
2

2
1

2
2
12

1

2.1.1.1

z

zzzz

which simplifies to
2
3

21

1

z
.

The given expression in part (ii) initially appears to be quite awful, until you realise that writing, for

instance,
x
yz

d
d

turns
2
3

2

2

2

d
d1

d
d

x
y

x
y

into
2
3

21
d
d

z
x
z

, and this can now be seen to be a standard

“separable variables” first order differential equation: x
z

z d
1

d
2
3

2
. Using (i)’s result then gives

)(
1 2

cx
z

z
(where the usual “+ c” has been incorporated into a slightly more helpful form here).

Re arranging this for z or z2 leads to )1()( 2222 zcxz
21 u

uz where (again) the more

complicated looking term has been given a new label, which is a simple but effective device to make what
to do next more obvious: here, u = (x + c).

We now substitute back for z =
x
u

u
y

x
y

d
d.

d
d

d
d

and use the Chain Rule (e.g.) with
x
u

d
d

to obtain another

“separable variables” first order differential equation,
21d

d
u

u
u
y

or
21

d
u

uy du . At this

point, you should be able to see that
21 u

u
du can be integrated (by “recognition”, “reverse chain rule”

or a substitution) to give 21 u . Substituting for u then gives 22 )(1 cxdky and

squaring both sides leads towards a circle equation 222 )(1)( cxdy or
22

2 1)( dycx , which is the equation of a circle, with centre dc, and a radius which is

the reciprocal of the curvature .
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Question 5

This sort of situation is relatively common in ‘Maths Challenges’ and the usual approach is to join all the
circles’ centres to the points of tangential contact and then form some right angled triangles by
considering (here) the horizontal line through B’s centre. Because of the well known (GCSE) Circle Theorem
“tangent perpendicular to radius” result, it is the case that each of AB, BC and CA is a straight line. This
enables us to use Pythagoras’ Theorem:

PR = PQ + QR 22 )()( caca = 22 )()( abab + 22 )()( bcbc

which simplifies to ac4 = ab4 + bc4 and, upon division throughout by abc4 , gives the required

answer
acb

111
.

There are many ways to approach the next result, but it should be clear that each will, at some stage,
require the replacement of the b’s with a’s and c’s (or equivalent). The most direct route would be to
examine the LHS and RHS of (**) separately, and then show that they match up. This would look like:

LHS = 2222222

146412221112
caccacacaacacba

=
accacacaca

884124
22 .

RHS =
22 11211111

ccacaacba

22 1114222
cacacaca

accacacaca
221314 22 , and these are clearly the same.

Working in the other direction is trickier, but not much more so, and it is again helpful to re label the
variables to make things look simpler, especially if we can somehow remove the need for everything to
appear as a fraction. So, following an initial observation that

222

1112
cba

=
2111

cba cabcabcba
222111

222

we could write
a

x 1
,

b
y 1

,
c

z 1
, so that we are now trying to prove that

.222 222222444 xzzyyxzyx
(Although it is not essential to do this at this stage, it is often the case that folks forget to do it at the end if
they don’t; and that is to consider the given conditions b < c < a, which translate to y > z > x.)

Now, completing the square: 222222 4 zxyzx xzyzx 2222 22 yxz , and there
are the four cases to consider: y = x – z , y = z – x , y = x + z or y = – x – z . Consideration of the above

conditions on x, y, z then shows that only y = x + z is suitable, and so
acb

111
, as required.
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Question 6

This is a fairly straightforward vectors question that involves little beyond working with the vector
equation of a line. To begin with, you are required to explain a couple of introductory results that rely on
the fact that two (non zero) vectors are multiples of each other if and only if they are parallel. Thus, OX ||
OA x =ma, with 0 <m < 1, since X is between O and A; and BC || OA c – b = ka and so c = ka + b, with
k < 0 since BC is in the opposite direction to OA.

Then, lines OB and AC have vector equations r = b and r = a + (c – a) respectively, for some scalar
parameters and . Replacing c by ka + b and equating the two r’s for the point of intersection then gives
b = a + (ka + b – a). Since a and b are not parallel, we can equate terms to find that 1 – + k = 0 and

= . Solving leads to =
k1

1 , so that d =
k1

1 b.

In an exactly similar way, we then have Y = XD BC ma + ab m
k1

1 = b + k a. (Note that there is

no reason why we have to use different symbols for the scalar parameters each time, as they are of no

actual significance in relation to the problem.) Equating coefficients m – m – k = 0 and 1
1 k

, so

that y = kma + b.

Next, Z = OY AB (1 – )a + b = bakm , and so 1 – – km = 0 and =
km1

1 , giving z =

km
km

1
a +

km1
1 b; and T = DZ OA a =

k1
1 b + bba

kkmkm
km

1
1

1
1

1
, whence =

km
km

1
and 0 =

kmk 11
1

, so that t = a
m

m
1

.

Notice that all that has been done so far is to work out the position vectors of the points created as the
intersections of various pairs of lines. If this is difficult to visualize, then a diagram should be drawn first.

All that remains is to set up the lengths of the various line segments of interest. If we call OA = a, then it

follows that OX = ma, OT = a
m

m
1

, TX = a
m

m
1

2

, TA = a
m1

1 and XA = (1 – m)a. (Note that the

shrewd solver would simply take, w.l.o.g., the value of a to be 1, as it is an arbitrary length and cancels
throughout any of the working that follows in order to obtain the two given answers,

OXOAmaOT
111111 and OT.OA = a

m
maa

m
m

1
1.)(

1
2 = OX.TA.
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Question 7

Firstly, S T = the set of all positive odd numbers; and S T = .

Next, we must show that the product of two different elements of S is also an element of S, and then do a
similar thing for two different elements of T. This involves noting that

(4a + 1)(4b + 1) = 4(4ab + a + b) + 1,
which is an element of S; and

(4a + 3)(4b + 3) = 4(4ab + 3a +3b + 2) + 1,
which is, in fact, in S rather than T.

The result of part (iii) essentially requires proof by contradiction, so we first suppose that t is an element of
T, and that all of t’s prime factors are in S. Noting that there are no even factors, we can write

t = (4a + 1) (4b + 1) (4c + 1) … (4n + 1).
But we have already noted that the product of any pair of elements of S will always yield another element
of S, and hence (inductively, I suppose), t = 4{ … … …} + 1 is always in S. Which contradicts the assumption
that t is an element of T.

For part (iv) (a), we note that an element of T is either T prime or T composite. If it is the latter, then it can
be expressed as a product of T primes. However, we have already established that every pair of factors in T
multiply to give an element of S, as do every pair of elements of T. So, after every pairing up of this
element’s factors, there must be an odd one left over to multiply by in order to give an element of T.
Hence, altogether, there is an odd number of them.

For the final part of the question, we are required to find non primes in S that are products of elements of
T that can be “re grouped” suitably. One such example involves the numbers 9, 21, 33 and 77, each of
which is both S prime and a product of elements in T:

9 = 3 3, 21 = 3 7, 33 = 3 11 and 77 = 7 11; with 3, 7 and 11 in T.
This leads to the example 9 77 = 21 33 (= 693). Of course, the main purpose of the question is to
demonstrate the existence of perfectly reasonable number sets (in this case, S), having the standard
properties of multiplication, yet for which the “unique factorisation” principle no longer holds. This is a
very important principle relating to prime numbers within the set of positive integers, which you have
been taught (quite rightly) to assume, but that I imagine you have never had reason to think that it might
not necessarily hold in this case, or in other similar situations.
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Question 8

This is a simple idea involving terms of series. The most important thing here is to be sure that you can
justify the form of the nth term for any given series. To begin with, it is helpful to realise that the Binomial
Theorem applied to the negative integers, gives the following results:

......1)1( 321 nxxxxx , with the coefficient of xn being 1;

...)1(...4321)1( 322 nxnxxxx , with the coefficient of xn being (n + 1); and

...)2)(1(...10631)1( 2
1323 nxnnxxxx , having the triangular numbers as coefficients;

etc.
Having established these results, it is easy to show that

......320 32 nnxxxx = x 2)1( x
and that

...)1(...10631)1( 1
2
1323 nxnnxxxxxx = ...)1(...630 2

132 nxnnxxx

has coefficient of xn equal to un = nn 2
12

2
1 .

Using these first two results: 2 (2nd) – (1st) gives 23 )1()1(
2

x
x

x
x

with un = n2.

There are several ways to proceed with part (ii) (a); the simplest being to note that
......3322 nn xakxakxakakxa = ......3322 nnxakxakxakakxakxa
= a + kx f(x)

and so f(x)
kx

a
1

1 .

For part (ii) (b), you should note that the given second order recurrence relation (i.e. two preceding terms
are involved) requires two starting terms before things get going systematically, so it is best to split off the
first two terms of the series before attempting to make use of this defining feature.

Writing f(x) =
2

0
n

n
n xux =

2
210

n

n
nn xuux =

2

2
2

2

2

1
1

n

n
n

n

n
n xuxxuxx

Note: we are trying to re create f(x) on the right hand side

=
0

2

1 n

n
n

n

n
n xuxxuxx = )(f0)(f 2 xxxxx

so that f(x) = 21 xx
x

.
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Question 9

As with all Statics problems, it is so important to have a clear diagram, suitably marked with all the relevant
forces (and preferably in the correct directions). The given diagram appears to give the situation when the
horizontal rail is more than half way along the rod; in this configuration, the rod will slip so that the end A
slides down the wall, and to the left relative to the contact at P (as shown below).

RP
B

FA G b P FP
a

A RA

W

d

The next essential part of any solution is to write down all the key statements before attempting to process
them in some way. The guidance “resolve twice and take moments” is surely a stock part of every
mechanics teacher’s repertoire, and it is sound advice. It is customary to resolve in two perpendicular
directions (vertically and horizontally here) and to find some point about which to take moments that
minimises the “clutter” of subsequent algebra and trigonometry (A has been chosen here). The additional
use of the Friction Law for, on this occasion, the case of limiting equilibrium at the two points of contact is
also needed. This gives us the following “ingredients” for use in a solution.
Friction Law FA = RA and FP = RP.
Res. W = FA + RP sin + FP cos
Res. RA = RP cos – FP sin
A W a sin = RP (a + b)

Eliminating the F’s from the two resolving statements gives
W = RA + RP sin + RP cos and RA = RP cos – RP sin

and introducing d in the moments statement (noting that it needs to appear in the answer) gives
W a sin2 = RP d.

Since this last equation involves just the forcesW and RP it makes sense to eliminate RA next, to get
.cossinsincosPRW

Finally, dividing these last two leads to the given answer,
sin]1[cos][cosec2 ad .

For the case when P is less than half way along the rod, which will now slide up the wall at A (etc.), we can
simply write FA – FA ; FP – FP ; a + b a – b, or just switch the signs of and , as everything else
remains unchanged. The corresponding result is thus shown to be

sin]1[cos][cosec2 ad .
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Question 10

When it comes to it, collisions questions involve only the use of two (sometimes three, if energy
considerations are involved) principles. In this case, the principles of Conservation of Linear Momentum
(CLM) and Newton’s (Experimental) Law of Restitution (NEL or NLR). Diagrams are also quite important in
these types of questions, but largely to enable the solver to be clear about what directions are being taken
as positive: remember that velocity and momentum are vectorial in nature. If you are ever unsure about
which direction any of the objects (particles or spheres, etc.) will be moving in after the collision has taken
place, then just have them all going the same way; this makes it much easier to interpret negative signs in
any later answers.

To begin with, there are two separate collisions, between A/B and C/D, as shown below.

u 0 0 u

A B C D

vA vB vC vD

For collision A/B CLM:m( u = vA +vB) and NEL: eu = vB – vA
and for collision C/D CLM:m(u = vC +vD) and NEL: eu = vC – vD
Solving each pair of equations, separately, gives

uevA 1
, uevB 1

)1(
, uevC )1(2

1 and uevD )1(2
1 ;

even though some of these turn out not to be required (though they may be later on, of course).

There is then a further collision between B/C:

vB vC

B C

0 wC

CLM:m(vB – vC) =mwC and NEL: e(vB + vC) = wC

Now, substituting previous answers in terms of e and u, and identifying for e, leads to the required answer

13
1e . To justify the following condition on e, note that

3
13

4

3
1

3
1

3
1

1313
413

13
33

13
1e

since the term being subtracted is positive. (It is not sufficient simply to show that e 3
1 .)

14



Finally, using wC = ue
)1(2

)1)(1(
from previous work, and equating this to vD, gives

ue
)1(2

)1)(1(
= ue)1(2

1 ;

and substituting for e (e.g.) enables us to solve for and then find e: 25 , e = 25 .
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Question 11

Projectiles questions are often straightforward in principle, but can often require both careful thought and
some tricky trigonometric manipulation. Occasionally, there is the additional requirement to maximise or
minimise something or other using calculus.
To begin with, it is useful to know (or to be able to derive quickly) the Trajectory Equation of the parabola:

22

2

cos2
tan

u
gxxy . Setting y = –h and re arranging then gives cossin2cos2 2

2

2

xh
u
gx , and it

should be fairly clear from the given answer that a little bit of work using the double angle formulae will

lead to the required result 2sin)2cos1(2

2

xh
u
gx

.

Differentiating w.r.t.
d
d.2sin2cos2.2sin2

d
d

2

2 xxh
u
gx . Notice that there is actually

no need to re arrange for ...
d
d since we require both derivative terms to disappear. This immediately

leads to x = h tan2 ; and, substituting back, we get 2sin2tan)2cos1(2tan
2

22

hh
u

gh . By

cancelling one of the h’s and (e.g.) writing all trig. terms in c = cos2 then yields
2

22

2 111
c

cc
cu

cgh 33222 ccccughcgh .

As a quadratic in c : ghcucghu 2220 = )1(  2 cghcghu … note that it is always worth trying
to factorise before deploying the messier quadratic formula.

We now have cos2 =
ghu

gh
2 , and substituting x = h tan2 and y = –h in 222 yx , then gives

2 h2 sec22 i.e. 2sech

so that
gh

ghuh
2

. h
g
u 2

, as required.
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Question 12

Bizarrely, this probability question concerning tossing fair coins has all of its answers equal to 2
1 . As one

might imagine, such an answer can be obtained in very many ways indeed and so the key is to make your
working really clear as to how the answer is arrived at. Merely writing down a whole load of fractions on
the page is really not very enlightening. There needs to be some (visible) systematic approach to counting
cases, followed by the numerical work that goes with it. For instance, in part (i), we could break down the
answer into each possible value for A and the values of B that could then go with it.
e.g. p(A = 0).p(B = 1,2 or 3) + p(A = 1).p(B = 2 or3) + p(A = 2).p(B = 3) = 8

1
4
1

8
4

4
1

8
7

4
1 2 = 2

1 .

For part (ii), one should by now have been able to “see” how the results arise, and can appeal to a “similar”
process; e.g. 16

1
8
1

16
14

8
3

16
146

8
3

16
1464

8
1 … notice the appearance of the binomial coefficients

for counting the relevant numbers of B’s possible values. This gives 6415311315 128
1

128
1 = 2

1 .

In part (iii), you should note that, when each of them has tossed n coins,
p(B has more Hs) = p(A has more Hs) = p2

and that p(AH = BH) = p1 . Thus p1 + 2p2 = 1.

Next, considering what happens when B tosses the extra coin,
p(B has more Hs) = p(B already has more Hs) p(B gets T)

+ p(B already has more, or equal, Hs) p(B gets H)
= 2

1
212

1
2 )( ppp = 2

1
212

1 )2( pp .
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Question 13

For the i th e mail, the pdf is ttfi e)( . Integrating this gives the cdf: ttFi e )( + C, and F(0) = 0

C = 1.

Then, for n e mails sent simultaneously,

F(t) = P(T t) = 1 – P(all n take longer than t) =
nte1 ,

(using the product of n independent probabilities)
= nte1 .

Differentiating this then gives the required pdf of T, f(t) = ntn e .

Finding an expected value is a standard integration process: E(T) =
0

e ntnt dt , and this requires the

use of integration by parts: E(T) =
0

e ntt +
0

e ntn dt = [0] +
0

e 
n

nt
=

n
1

.

For the very final part, one could go again through the route of pdfs and cdfs, but it should be obvious that
the waiting time for the 2nd email is simply the 1st from the remaining (n – 1) … with expected arrival time

)1(
1

n
, giving a total waiting time of

)1(
111

)1(
11

nnnn
.

18



STEP 2016 Solutions

Question 1

Use and to represent the value of the parameter at each of the points P and Q. The
equations of the two tangents can therefore be found in terms of and and the fact that
POQ is a right angle can be used to find a relationship between and . The point of
intersection of the two tangents can therefore be found in terms of just and this is a pair
of parametric equations for the curve that the point of intersection makes.

Substituting the parametric equations for into the equation for gives a cubic equation
in which can be solved by inspection to show that there are just two intersections and so
the two curves just touch, but do not cross.

Question 2

Substitute into the expression to show that is a factor. Once this is
done, the symmetry shows that and must also be factors and therefore
there is just a constant multiplier that needs to be deduced to obtain the full factorisation of
(*).

For part (i), choices of , and need to be made so that

Once these have been identified the solutions to the equation follow from the factorisation
already deduced.

Once the substitution has been made it is only necessary to identify the parts of
the expression which differ from (*) in the first part of the question (which arise from the
and terms). The factorisation and solution of the equation then follow a similar process
to the first part of the question.
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Question 3

The differentiation to show the result in part (i) should not present much difficulty, although
it is important to show that all of the terms (and no others) are present.

For part (ii) observe that each individual term of has a positive coefficient, so for any
positive value of the value of must be positive.

For part (iii), use the result in part (i) to rewrite in terms of and note that
and must be 0. This means that any pair of roots must have a gradient of the same
sign, which leads to an argument that there must be another root between the two. As this
would lead to an infinite number of roots to a polynomial, there cannot be more than one
root.

To establish the number of roots in the two cases consider the behaviour of the graph as
and as

Question 4

The equation given can be rewritten as a quadratic in . The discriminant then establishes
the required result. To show the second result, show that ,
which can be shown by writing in the form and then this result
is a quadratic inequality that leads directly to the next result.

In the case , careful manipulation of surds shows the required result and so the
value of must be the value of obtained in the previous section. Finally, the value of
can be obtained by returning to the original equation and substituting in the values that are
known.
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Question 5

The binomial expansion for should be easy enough, it is then required to write

the product in terms of factorials so that the expression can be written in terms of .

Since the expansion of involves a coefficient of 1 for every term, the coefficient of
in the expansion of is simply the sum of the coefficients of all of the

terms in the expansion of up to and including the term in .

The products in the sum on the right hand side of the result in part (ii) should be
recognisable as binomial coefficients in the case where the power is a positive integer, so
use

and compare coefficients as in part (i).

Similarly for part (iii), identify that the result will come from consideration of

Question 6

Parts (i) and (ii) only require verification in each of the cases, so simply differentiate the
functions given and substitute into the differential equation to confirm that they are
solutions. Remember to check as well that the boundary conditions are satisfied.

For part (iii), differentiate the given formula for and substitute into the differential
equation. By observing that the new differential equation is of the same form as (*), but for

instead of , the expression for can be established.

For part (iv), again differentiate the given formula, being careful about the application of the
chain rule and substitute. Again, by comparing with (*) the final result should be clear.

Question 7

The first result can be shown by using a substitution into the integral, being careful to
explain the change of sign when the limits of the integral are switched.

Simple application of knowledge of trigonometric graphs once the substitution has been
made can be used to show that twice the integral is equivalent to integrating the function 1
over the interval.

Similarly, the remaining integrals can all be rearranged using standard trigonometric
identities and knowledge of logarithms into forms that can be integrated from standard
results once the substitution from (*) has been made.
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Question 8

The integral required at the start of the question should be a straightforward one to
evaluate. When making a sketch to illustrate the result in the second part, ensure that the
sum is indicated by a series of rectangles, with the graph of the curve passing through the
midpoints of the tops.

In part (i), the integral that would match the sum given results in an answer of 2, so this is
the first of the estimates. The remaining estimates arise from using the integral to estimate
most of the sum, but taking the first few terms as the exact values (so in each case the
integration is taken from a different lower limit).

For part (ii), evaluate the integral for one particular term of the sum and note that it is

approximately . Finally, using the most accurate estimate for the sum from

onwards can be calculated and then the first two values of can be added to achieve the
desired result.

Question 9

The result in part (i) follows from consideration of kinetic energy lost and work done.

In part (ii) apply conservation of momentum to the combined block and bullet after the
bullet hits the block. By comparing to the case in part (i) the motion of the bullet until it is at
rest relative to the block can be analysed. Once all of the relevant equations of motion have
been written down, a series of simultaneous equations will have been found from which the
values of and can be found.

Question 10

The first requirement will be to find the centre of mass of the triangle. Once this is done a
diagram will be very useful and notations will need to be added for various distances, angles
and the frictional force. From this diagram the forces can be resolved in two perpendicular
directions and moments can be taken. This leads to a series of equations which can be
solved to work out the value that the frictional force would have to take to prevent slipping.
From this the required result can be established.
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Question 11

The particles must collide if they would be in the same position for one particular value of .
Therefore, writing out the equations of motion for the two particles and eliminating the
variables that are not needed the required result can be reached.

For the second part, the time of the collision can be found by considering the heights of the
bullet and target at time and noting that these must be equal. Once the value of has
been found, the fact that this must be positive leads to the inequality that is required for the
first result.

For the final part, note that gravity affects both the bullet and target in the same way, so if it
is ignored then the time of collision (if there is one) will be the same and this is a situation as
in part (i). Clearly, in part (i) the two objects must be moving towards each other if there is
to be a collision.

Question 12

Replace with in the result that you must start with and then observe that
is the same as . The corresponding result for four events

should be clear, but care must be taken to include all of the possible pairs.

The results for parts (i), (ii) and (iii) should be clear from consideration of arrangements in
each case and the result required follows from the generalisation of the result from the start
of the question.

The probability that the first card is in the correct position and none of the others is can be
established and therefore the probability that exactly one card is in the correct position will
be times that.

Question 13

For part (i) the approximation of the binomial distribution by a normal distribution should
be known and the area under the curve (applying a continuity correction) can then be
approximated by a rectangle.

The second result follows from a similar approximation and the use of the formula for a
probability from the binomial distribution.

Part (iii) follows from an approximation of a Poisson distribution with a normal distribution
and again approximating the required area by a rectangle.
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1. Part (i) is most simply dealt with by the suggested method, change of variable, and it is
worth completing the square in the denominator to simplify the algebra leading to a trivial integral.
Part (ii) can either be attempted immediately using integration by parts, starting from and

obtaining and then writing the numerator as

. Alternatively, use of the same substitution in
as in part (i) leads to the need to integrate , which in turn can be written as

, with the second term being susceptible
to integration by parts. Part (iii) follows from the previous parts by induction using part (ii) to
achieve the inductive step and (i) the base case.

2. There are numerous correct ways through this question. Working parametrically with
, gives a normal as and imposing that this passes through

yields (*) which has roots and , the former giving (i). As a
consequence, and , so that QR, , simplifies to

, and thus passes through for (ii). T can be shown to be ,

which, of course, lies on , and as (*) had two real distinct roots, and , , which

yields .

3. Differentiating, multiplying by denominators and dividing by the exponential function, gives
which, invoking the factor theorem, gives the first

required result. Denoting the degree of P by p and that of Q by q in this expression yields
and hence the desired result in (i). Furthermore, in the given case, substitution

in the same result and postulating yields consistent equations for , and
and thus .
For part (ii), commencing as in part (i) demonstrates again that Q has a factor as

. Supposing , where and
, with and substituting in the expression already derived leads to a

contradiction.

4. The considered expression equates to and so, by the method of differences,

, and letting , the desired result is obtained.

Writing as and similarly , the result of part (i) with can

be used to obtain the result. Care needs to be taken to write as

which with the previous deduction of (ii) can be
simplified to .

5. The binomial expansion, evaluated for , appreciating that terms are symmetrical
contains two terms equal to the LHS of the inequality, and so truncating to them gives double the

required result in (i). Appreciating that is an integer and that if ,

with p a prime, implies p divides the numerator and not the denominator of this expression and
hence divides the integer then can be extended for all such primes yielding the result, with the
deduction following from (i). For (iii), it can be shown that and writing as
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, combining the given result and (ii), the desired result is obtained. Part (iv) is
obtained by use of strong induction with the supposition, for all for some
particular , and considering the cases k even and odd separately and making use of (iii).

6. Using , and
if . If , then . If , the

expression can be written as with and . If ,
then , and if , the expression can be written as

with and . For part (i), solving simultaneously gives
, which gives the desired solutions using the first result of the question.

Similarly for part (ii) using the appropriate result, . For (iii), we

require that the conditions for (i) give two solutions, i.e. that and , and so

, and vice versa, if this applies there are indeed two solutions. For (iv), we require
case (i) to give coincident solutions, i.e. and hence , and so

. The reverse argument also applies.

7. Considering establishes by the factor theorem that each factor on the LHS is a factor
of the RHS, and comparing coefficients of between the two sides establishes that no numerical
factor is required. For part (i), representing by , then there are two cases to consider, will

be represented either by , or . The product of moduli is the moduli of the product of
factors, and the product of the factors can be simplified using the stem and choosing in turn as the
representations of to give the required result in both cases. Proceeding similarly for n odd, the
first case yields , and the second, , if , and if .
Using the same representations for the in part (ii), and the same technique with the moduli, the
stem can be divided by to give
which then gives the desired result when .

8. The first result in (i) is obtained by the substitution (followed by a second !).
Substituting for in the initial statement using the result obtained readily leads to
which is simply verified. Alternatively, subtracting the result from the initial equation leads to

which substituting gives the required result again. In part (ii), substituting for

in the equation for gives an equation for which can be substituted in the equation to

be solved to give the desired result. Similarly, in part (iii), substituting for gives an equation for

and , and then repeating this substitution in the equation just obtained gives an

equation for and . Adding the given and last equations and subtracting that first found

leads to .

9. There are numerous ways to obtain via e.g. knowledge of the centroid of a

triangle, Pythagoras theorem, trigonometry or a combination of these, leading to the initial
extension result. Pythagoras theorem can be used to find and hence the given tension. The
equation of motion in the direction combines the tension in and the resolved parts of the
tensions in the other two springs. Writing the cosine of the angle between and produced as
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, leads to which making an

approximation for small and the binomial expansion leads to , and hence
the final result.

10. Resolving along a line of greatest slope initially, bearing in mind the acceleration due to
circular motion, gives an expression for the initial tension in the string which can be substituted in
the expression obtained for normal contact force obtained by resolving perpendicular to the slope.
Requiring a positive normal contact force then gives the desired result. To complete circles, there
must be a tension in the string when the particle is at the highest point it can reach on the plane.
Conserving energy gives and resolving down the plane yields

resulting in ; this combined with the first

result will give the final desired result. (The first result can be found elegantly by resolving
perpendicularly to the string.)

11. In part (i), expressing the resistance as , then the zero acceleration condition gives
. Writing the equation of motion using , and solving the differential equation by

separating variables, the integration gives which evaluated and

rearranged is the required result. Part (ii) follows a similar route, instead expressing the resistance
as , with . The same technique for the differential equation gives a slightly simpler

integration to yield the result. can be manipulated to be which can
be shown to be positive using the appropriate bounds and so answering part (iii) that is the
larger.

12. Using the binomial distribution, , , writing as
enables Chebyshev to be applied with leading to the required result in (i).

Similarly, in part (ii), considering a Poisson distribution with mean , and appreciating that
implies in these circumstances, the same value of as in part (i) with

Chebyshev leads to the desired result.

13. Showing that has the same kurtosis as requires the expectations of ,
, and to be obtained and substituted. For part (i), the

numerator can be obtained by an integration by parts reducing the integral to the one that gives the
variance. Expanding as , where the
summation is over all values without repetition, and taking the expectation of these terms gives the
requested result in part (ii). Defining , the kurtosis of by the first result gives

and defining as in (ii), the kurtosis of is, using the result of (ii),

giving the required answer.
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